Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 8 de 8
Фильтр
1.
Arch Razi Inst ; 77(5): 1587-1591, 2022 10.
Статья в английский | MEDLINE | ID: covidwho-1939566

Реферат

Saliva is one of the most significant components in maintaining oral homeostasis and symbiosis. It contains antimicrobial proteins and peptides, such as mucins, lactoferrin, lysozyme, lactoperoxidase, Catherine, statins, and antibodies (secretory immunoglobin A [sIgA]). Early defenses against respiratory infections rely heavily on mucosal immunity, especially secretory sIgA, which has several features and functions that make it suitable for mucosal defense. Salivary testing has been utilized to define mucosal immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Lysozyme has muramidase, with antimicrobial activity, and high concentrations in body fluids, such as saliva and tear. This research aimed to offer an update on how saliva components suppress viral infection and sustain health. A total of 50 individuals, including 30 SARS-2 patients and 20 non-infected subjects, in the age range of 32-54 years were enrolled in this study. Saliva specimens were obtained from polymerase chain reaction (PCR)-confirmed coronavirus disease 2019 (COVID-19) patients and non-infected participants. To collect saliva, the subjects were advised to swirl water over their lips three times, and 5.0 ml of saliva was collected. Samples were centrifuged at 800 x g for 10 min. Saliva was diluted at 1:2,000 with 1 × Diluent N. The immunoglobulin A (IgA) titer in saliva was detected. A spectrophotometer was used to measure the solution's change in absorbance at 550 nm. Measurements (salivary IgA and lysozyme) were made after 7, 30, and 60 days of confirmatory PCR COVID-19 test. The mean scores of salivary IgA levels were obtained at 17.85, 15.26, and 10.73 mg/dl in patients and 9.53, 10.33, and 9.21 mg/dl in healthy individuals after 7, 30, and 60 days, respectively. The salivary lysozyme activity levels in SARS-2 patients compared to controls were 9.7, 7.3, and 4.2 mg/dl versus 2.9, 3.4, and 3.77 mg/dl, respectively. The salivary IgA level was significantly higher in patients of a confirmatory test for COVID-19 compared to healthy individuals.


Тема - темы
Anti-Infective Agents , COVID-19 , Saliva , Anti-Infective Agents/metabolism , COVID-19/diagnosis , Immunoglobulin A/metabolism , Immunoglobulin A, Secretory/analysis , Immunoglobulin A, Secretory/metabolism , Iraq , Muramidase/analysis , Muramidase/metabolism , SARS-CoV-2 , Humans , Male , Female , Adult , Middle Aged , Saliva/virology
2.
World J Microbiol Biotechnol ; 38(9): 158, 2022 Jul 12.
Статья в английский | MEDLINE | ID: covidwho-1930505

Реферат

In this mini-review, after a brief introduction into the widespread antimicrobial use of silver ions and nanoparticles against bacteria, fungi and viruses, the toxicity of silver compounds and the molecular mechanisms of microbial silver resistance are discussed, including recent studies on bacteria and fungi. The similarities and differences between silver ions and silver nanoparticles as antimicrobial agents are also mentioned. Regarding bacterial ionic silver resistance, the roles of the sil operon, silver cation efflux proteins, and copper-silver efflux systems are explained. The importance of bacterially produced exopolysaccharides as a physiological (biofilm) defense mechanism against silver nanoparticles is also emphasized. Regarding fungal silver resistance, the roles of metallothioneins, copper-transporting P-type ATPases and cell wall are discussed. Recent evolutionary engineering (adaptive laboratory evolution) studies are also discussed which revealed that silver resistance can evolve rapidly in bacteria and fungi. The cross-resistance observed between silver resistance and resistance to other heavy metals and antibiotics in bacteria and fungi is also explained as a clinically and environmentally important issue. The use of silver against bacterial and fungal biofilm formation is also discussed. Finally, the antiviral effects of silver and the use of silver nanoparticles against SARS-CoV-2 and other viruses are mentioned. To conclude, silver compounds are becoming increasingly important as antimicrobial agents, and their widespread use necessitates detailed understanding of microbial silver response and resistance mechanisms, as well as the ecological effects of silver compounds. Figure created with BioRender.com.


Тема - темы
Anti-Infective Agents , Bacterial Infections , COVID-19 , Metal Nanoparticles , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Bacteria/metabolism , Copper/metabolism , Humans , Ions/metabolism , Ions/pharmacology , SARS-CoV-2 , Silver/metabolism , Silver/pharmacology , Silver Compounds/metabolism , Silver Compounds/pharmacology
3.
Int J Mol Sci ; 22(20)2021 Oct 12.
Статья в английский | MEDLINE | ID: covidwho-1480791

Реферат

Novel xanthine and imidazolone derivatives were synthesized based on oxazolone derivatives 2a-c as a key intermediate. The corresponding xanthine 3-5 and imidazolone derivatives 6-13 were obtained via reaction of oxazolone derivative 2a-c with 5,6-diaminouracils 1a-e under various conditions. Xanthine compounds 3-5 were obtained by cyclocondensation of 5,6-diaminouracils 1a-c with different oxazolones in glacial acetic acid. Moreover, 5,6-diaminouracils 1a-e were reacted with oxazolones 2a-c in presence of drops of acetic acid under fused condition yielding the imidazolone derivatives 6-13. Furthermore, Schiff base of compounds 14-16 were obtained by condensing 5,6-diaminouracils 1a,b,e with 4-dimethylaminobenzaldehyde in acetic acid. The structural identity of the resulting compounds was resolved by IR, 1H-, 13C-NMR and Mass spectral analyses. The novel synthesized compounds were screened for their antifungal and antibacterial activities. Compounds 3, 6, 13 and 16 displayed the highest activity against Escherichia coli as revealed from the IC50 values (1.8-1.9 µg/mL). The compound 16 displayed a significant antifungal activity against Candia albicans (0.82 µg/mL), Aspergillus flavus (1.2 µg/mL) comparing to authentic antibiotics. From the TEM microgram, the compounds 3, 12, 13 and 16 exhibited a strong deformation to the cellular entities, by interfering with the cell membrane components, causing cytosol leakage, cellular shrinkage and irregularity to the cell shape. In addition, docking study for the most promising antimicrobial tested compounds depicted high binding affinity against acyl carrier protein domain from a fungal type I polyketide synthase (ACP), and Baumannii penicillin- binding protein (PBP). Moreover, compound 12 showed high drug- likeness, and excellent pharmacokinetics, which needs to be in focus for further antimicrobial drug development. The most promising antimicrobial compounds underwent theoretical investigation using DFT calculation.


Тема - темы
Anti-Infective Agents/chemical synthesis , Imidazoles/chemistry , Uracil/chemistry , Xanthines/chemistry , Animals , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Binding Sites , Candida albicans/drug effects , Cell Survival/drug effects , Chlorocebus aethiops , DNA Gyrase/chemistry , DNA Gyrase/metabolism , Density Functional Theory , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Half-Life , Imidazoles/metabolism , Imidazoles/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , Polyketide Synthases/chemistry , Polyketide Synthases/metabolism , Structure-Activity Relationship , Thermodynamics , Vero Cells
4.
ACS Appl Bio Mater ; 4(7): 5471-5484, 2021 07 19.
Статья в английский | MEDLINE | ID: covidwho-1337090

Реферат

Centers for Disease Control and Prevention (CDC) warns the use of one-way valves or vents in face masks for potential threat of spreading COVID-19 through expelled respiratory droplets. Here, we have developed a nanoceutical cotton fabric duly sensitized with non-toxic zinc oxide nanomaterial for potential use as a membrane filter in the one-way valve for the ease of breathing without the threat of COVID-19 spreading. A detailed computational study revealed that zinc oxide nanoflowers (ZnO NFs) with almost two-dimensional petals trap SARS-CoV-2 spike proteins, responsible to attach to ACE-2 receptors in human lung epithelial cells. The study also confirmed significant denaturation of the spike proteins on the ZnO surface, revealing removal of the virus upon efficient trapping. Following the computational study, we have synthesized ZnO NF on a cotton matrix using a hydrothermal-assisted strategy. Electron-microscopic, steady-state, and picosecond-resolved spectroscopic studies confirm attachment of ZnO NF to the cotton (i.e., cellulose) matrix at the atomic level to develop the nanoceutical fabric. A detailed antimicrobial assay using Pseudomonas aeruginosa bacteria (model SARS-CoV-2 mimic) reveals excellent antimicrobial efficiency of the developed nanoceutical fabric. To our understanding, the nanoceutical fabric used in the one-way valve of a face mask would be the choice to assure breathing comfort along with source control of COVID-19 infection. The developed nanosensitized cloth can also be used as an antibacterial/anti CoV-2 washable dress material in general.


Тема - темы
Anti-Infective Agents/chemistry , COVID-19/prevention & control , Nanostructures/chemistry , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , COVID-19/virology , Cotton Fiber/analysis , Humans , Masks , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Recycling , Respiratory Aerosols and Droplets/virology , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Zinc Oxide/chemistry
5.
ACS Appl Bio Mater ; 4(7): 5485-5493, 2021 07 19.
Статья в английский | MEDLINE | ID: covidwho-1327183

Реферат

Attachment of microbial bodies including the corona virus on the surface of personal protective equipment (PPE) is found to be potential threat of spreading infection. Here, we report the development of a triboelectroceutical fabric (TECF) consisting of commonly available materials, namely, nylon and silicone rubber (SR), for the fabrication of protective gloves on the nitrile platform as model wearable PPE. A small triboelectric device (2 cm × 2 cm) consisting of SR and nylon on nitrile can generate more than 20 V transient or 41 µW output power, which is capable of charging a capacitor up to 65 V in only ∼50 s. The importance of the present work relies on the TECF-led antimicrobial activity through the generation of an electric current in saline water. The fabrication of TECF-based functional prototype gloves can generate hypochlorite ions through the formation of electrolyzed water upon rubbing them with saline water. Further, computational modelling has been employed to reveal the optimum structure and mechanistic pathway of antimicrobial hypochlorite generation. Detailed antimicrobial assays have been performed to establish effectiveness of such TECF-based gloves to reduce the risk from life-threatening pathogen spreading. The present work provides the rationale to consider the studied TECF, or other materials with comparable properties, as a material of choice for the development of self-sanitizing PPE in the fight against microbial infections including COVID-19.


Тема - темы
Anti-Infective Agents/chemistry , Electricity , Personal Protective Equipment , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , COVID-19/pathology , COVID-19/prevention & control , COVID-19/virology , Humans , Nylons/chemistry , Personal Protective Equipment/microbiology , Personal Protective Equipment/virology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Recycling , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Silicone Elastomers/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
6.
Z Naturforsch C J Biosci ; 76(11-12): 467-480, 2021 Nov 25.
Статья в английский | MEDLINE | ID: covidwho-1202282

Реферат

A series of ethyl 2-(2-(arylidene)hydrazinyl)thiazole-4-carboxylates (2a-r) was synthesized in two steps from thiosemicarbazones (1a-r), which were cyclized with ethyl bromopyruvate to ethyl 2-(2-(arylidene)hydrazinyl)thiazole-4-carboxylates (2a-r). The structures of compounds (2a-r) were established by FT-IR, 1H- and 13C-NMR. The structure of compound 2a was confirmed by HRMS. The compounds (2a-r) were then evaluated for their antimicrobial and antioxidant assays. The antioxidant studies revealed, ethyl 2-(2-(4-hydroxy-3-methoxybenzylidene)hydrazinyl)thiazole-4-carboxylate (2g) and ethyl 2-(2-(1-phenylethylidene)hydrazinyl)thiazole-4-carboxylate (2h) as promising antioxidant agents with %FRSA: 84.46 ± 0.13 and 74.50 ± 0.37, TAC: 269.08 ± 0.92 and 269.11 ± 0.61 and TRP: 272.34 ± 0.87 and 231.11 ± 0.67 µg AAE/mg dry weight of compound. Beside bioactivities, density functional theory (DFT) methods were used to study the electronic structure and properties of synthesized compounds (2a-m). The potential of synthesized compounds for possible antiviral targets is also predicted through molecular docking methods. The compounds 2e and 2h showed good binding affinities and inhibition constants to be considered as therapeutic target for Mpro protein of SARS-CoV-2 (COVID-19). The present in-depth analysis of synthesized compounds will put them under the spot light for practical applications as antioxidants and the modification in structural motif may open the way for COVID-19 drug.


Тема - темы
Anti-Infective Agents/chemical synthesis , Antioxidants/chemistry , Antiviral Agents/chemistry , Molecular Docking Simulation , Thiazoles/chemistry , Viral Matrix Proteins/chemistry , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Density Functional Theory , Fusarium/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , SARS-CoV-2/enzymology , SARS-CoV-2/isolation & purification , Structure-Activity Relationship , Thiazoles/metabolism , Viral Matrix Proteins/metabolism
7.
Bioorg Chem ; 112: 104925, 2021 07.
Статья в английский | MEDLINE | ID: covidwho-1198631

Реферат

Antibiotic resistance and emerging viral pandemics have posed an urgent need for new anti-infective drugs. By screening our microbial extract library against the main protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the notorious ESKAPE pathogens, an active fraction was identified and purified, leading to an initial isolation of adipostatins A (1) and B (2). In order to diversify the chemical structures of adipostatins toward enhanced biological activities, a type III polyketide synthase was identified from the native producer, Streptomyces davawensis DSM101723, and was subsequently expressed in an E. coli host, resulting in the isolation of nine additional adipostatins 3-11, including two new analogs (9 and 11). The structures of 1-11 were established by HRMS, NMR, and chemical derivatization, including using a microgram-scale meta-chloroperoxybenzoic acid epoxidation-MS/MS analysis to unambiguously determine the double bond position in the alkyl chain. The present study discovered SARS-CoV-2 main protease inhibitory activity for the class of adipostatins for the first time. Several of the adipostatins isolated also exhibited antimicrobial activity against selected ESKAPE pathogens.


Тема - темы
Acyltransferases/metabolism , Anti-Infective Agents/chemistry , Bacterial Proteins/metabolism , Resorcinols/chemistry , Acyltransferases/antagonists & inhibitors , Acyltransferases/classification , Acyltransferases/genetics , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/classification , Bacterial Proteins/genetics , COVID-19/pathology , COVID-19/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Drug Evaluation, Preclinical , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Molecular Conformation , Phylogeny , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Resorcinols/isolation & purification , Resorcinols/metabolism , Resorcinols/pharmacology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Streptomyces/enzymology , Tandem Mass Spectrometry
8.
Bioorg Chem ; 105: 104354, 2020 12.
Статья в английский | MEDLINE | ID: covidwho-838154

Реферат

Three series of nanosized-formazan analogues were synthesized from the reaction of dithiazone with various types of α-haloketones (ester and acetyl substituted hydrazonoyl chlorides and phenacyl bromides) in sodium ethoxide solution. The structure and the crystal size of the new synthesized derivatives were assured based on the spectral analyses, XRD and SEM data. The antibacterial and antifungal activities were evaluated by agar diffusion technique. The results showed mild to moderate antibacterial activities and moderate to potent antifungal activities. Significant antifungal activities were observed for four derivatives 3a, 3d, 5a and 5g on the pathogenic fungal strains; Aspergillus flavus and Candida albicans with inhibition zone ranging from 16 to 20 mm. Molecular docking simulations of the synthesized compounds into leucyl-tRNA synthetase editing domain of Candida albicans suggested that most formazan analogues can fit deeply forming stable complexes in the active site. Furthermore, we utilized the docking approach to examine the potential of these compounds to inhibit SARS-CoV-2 3CLpro. The results were very promising verifying these formazan analogues as a hopeful antiviral agents.


Тема - темы
Anti-Infective Agents/chemical synthesis , Coronavirus 3C Proteases/metabolism , Formazans/chemistry , Molecular Docking Simulation , Nanostructures/chemistry , SARS-CoV-2/metabolism , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Aspergillus flavus/drug effects , Binding Sites , COVID-19/pathology , COVID-19/virology , Candida albicans/drug effects , Catalytic Domain , Coronavirus 3C Proteases/chemistry , Formazans/metabolism , Formazans/pharmacology , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Leucine-tRNA Ligase/chemistry , Leucine-tRNA Ligase/metabolism , SARS-CoV-2/isolation & purification
Критерии поиска